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ReceiVed December 20, 2001

ChemGPS, the chemical global positioning system, is a tool that combines rules (equivalent to dimensions)
and objects (chemical structures) to provide a consistent chemical space map (Oprea, T. I.; Gottfries, J.J.
Comb. Chem.2001, 3, 157-166.). Rules included, initially, general properties such as size, lipophilicity,
and hydrogen bond capacity, while objects include “satellites”, intentionally placed outside the druglike
space, as well as “core” objects, mostly orally available drugs. ChemGPS molecules (objects) were used in
conjunction with the VolSurf (http://www.moldiscovery.com) descriptors (rules), which are relevant for
ADME (absorption, distribution, metabolism, and excretion) properties. The combination of ChemGPS and
VolSurf, GPSVS, was investigated with respect to the biopharmaceutics classification system, which is
recommended by the Food and Drug Administration (FDA) (http://www.fda.gov/cder/OPS/BCS_guidance-
.htm), in particular with respect to permeability and solubility. The first GPSVS principal component correlates,
with no further training, to passive transcellular permeability, as illustrated for the Caco-2, ghost erythrocyte,
and blood-brain barrier datasets, respectively. The second GPSVS principal component correlates, without
prior training, to solubility, as shown for the octanol-water partition and intrinsic solubility datasets,
respectively. Although derived from principal component analysis, the two property axes rotate and form
an angle of approximately 43°, thus being no longer orthogonal. GPSVS can be used to map the chemical
space with respect to permeability and solubility, as recommended by FDA’s biopharmaceutics classification
system.

Introduction

Because of the increased number of compounds available
from combinatorial and parallel synthesis,1 there is a growing
demand for methods that predict absorption, distribution,
metabolism, and excretion (ADME) behavior in humans. The
need to evaluate, early on, both permeability and solubility
has recently been illustrated by Lipinski,2 who analyzed the
trends in two sets of compounds from Merck and Pifzer.
The “rational design approach” at Merck seems to lead to
clinical candidates with poorer permeability, whereas the
“HTS approach” at Pifzer appears to result in clinical
candidates with poorer solubility.2 Since poor permeability
and poor solubility are among the main reasons for failure
in clinical trials, it has become apparent that awareness of
these pitfalls should be introduced as early as possible in
the lead discovery process.3

A decade ago, it was recognized that the fraction absorbed
of a drug in the gastrointestinal tract could be predicted and
estimated from in vitro systems such as the measurement of
permeation through Caco-2 cell monolayer,4 e.g., via perme-
ability coefficients. However, this experimental technique
requires high-purity soluble compounds in order to success-
fully assess permeability. Therefore, synthesis prioritization
of compounds, or combinatorial libraries, needs to be
performed not only by judging molecular diversity5-7 but
more often by considering ADME properties as well.8-10

Thus, there is an increasing demand for fast and accurate
predictions of pharmacokinetic properties.

However, the process of combinatorial library design and
evaluation11 is far from linear, and the decision of applying
ADME property filters needs to be carefully balanced.
Usually, a wide range of molecular descriptors12 are evaluated
in reactant and/or product space13-15 prior to compound
selection, with or without enumeration.14,16,17Other criteria,
e.g., druglike18,19 or leadlike20,21 properties, followed by
statistical analysis, e.g., via PCA22 (principal component
analysis) and design of experiments,23,24 are used to limit
the range of possibilities prior to synthesis. The choice of
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descriptors, reagents, and products is quite likely to have a
significant influence on the compounds suggested for
synthesis, and the introduction of ADME property filters will
add to the complexity of the analyses; in most cases, local
models will be developed for each particular problem, with
a limited range of predictivity, unless one resorts to a uniform
metric7,11 for chemical space.

We have recently proposed ChemGPS (chemical global
positioning system) as a tool25-27 for providing a consistent
map of the chemical space based on a set of rules (i.e.,
chemical space dimensions related to the medicinal chemistry
space) and a set of objects (i.e., molecules of interest). The
423 ChemGPS objects consist of a set of “satellite”
structures, intentionally placed outside the medicinal chem-
istry space, and a set of representative (“core”) structures,
consisting mostly of orally available drugs. We have previ-
ously shown26 the ability of ChemGPS to provide a global
chemical space map by performing extensive comparisons
with GRID-based28 principal properties for heteroaromatic
compounds29 and principal properties (“z-scores”) ofR-amino
acids,30 as well as by comparison to locally derived PCA
models. When 72 descriptors computed with the SaSA31 and
HYBOT32 programs were used, a nine-dimensional ChemGPS
map was derived from PCAt-scores, as previously de-
scribed.26

Two of the ADME properties, passive permeability and
solubility, have been used by the FDA (Food and Drug
Administration) in their biopharmaceutics classification
system, BCS,33 as a guide for the in vivo bioavailability and
bioequivalence studies for immediate-release solid oral
dosage forms. Our work is therefore focused on the predic-
tion of these two key properties, using the 423 ChemGPS
objects as a reference system, in conjunction with the
VolSurf34,35 set of descriptors. On the basis of GRID28-
calculated molecular interaction fields (MIFs), the VolSurf
descriptors were previously shown to provide significant
models for passive permeability in the intestine, as well as

in the blood-brain barrier, BBB.36-38 We show that GPSVS,
the combination of ChemGPS objects26 with VolSurf de-
scriptors,35 can be used to map the chemical space with
respect to permeability and solubility, as recommended by
FDA’s biopharmaceutics classification system. GPSVS could
therefore become useful in the planning stages of combina-
torial and medicinal chemistry synthesis to avoid those
compounds that display poor permeability and poor solubil-
ity.

Materials and Methods

A. Data Sets.VolSurf descriptors were calculated on six
different sets: the ChemGPS training set,26 permeability
across the BBB,37 passive transcellular permeability across
the Caco-2 cell monolayer, passive transcellular permeability
across erythrocyte ghost cells,35 lipophilicity (log Po/wt),39 and
solubility.40

B. Molecular Modeling. The ChemGPS training set (423
objects) was converted to 3D structures using CONCORD,41

without further processing. When the 2D-3D conversions
failed, molecules were built starting from X-ray structures
or were modeled from parent compounds in SYBYL.42

VolSurf descriptors, summarized in Table 1, were obtained
in a two-step process (Figure 1): (a) The molecular interac-
tion fields for the H2O, DRY and O probes were computed
with GRID. (b) The resulting MIFs were analyzed, and the
72 VolSurf descriptors, related to the surface, volume, group
distribution, and the relationships between them, were
obtained (Table 1).

VolSurf descriptors provide directly interpretable maps for
the hydrogen bond acceptor interactions (O probe), for the
hydrogen bond donor interactions43 (fields from the H2O
probe. from which the fields derived with the O probe are
subtracted), and for the hydrophobic interactions (DRY
probe). Latent variables were extracted by applying PCA to
the VolSurf descriptors set.

Table 1. Description of VolSurf Descriptors

VolSurf code definition

V volume: total volume (computed at 0.25 kcal/mol)
S surface: total surface (computed at 0.25 kcal/mol)
R rugosity: volume/surface
G globularity: surface of the compound divided by the surface of a sphere with the same volume
W1-W8 volume of interaction with the H2O probe at-0.2,-0.5,-1.0,-2.0,-3.0,-4.0,-5.0, and-6.0

kcal/mol levels
IW1-IW8 integy moment: proportional to the distance between the baricenter of the surface and the

volume of interactions with the H2O probe at the different energy levels
CW1-CW8 capacity factor: volume of interaction with the H2O probe divided by the surface
Min1-Min3 energy minima: the first three energy minima interactions
D12, D13, D23 distance: the distances between the energy minima
D1-D8 volume of interaction with the dry probe at-0.2,-0.4,-0.6,-0.8,-1.0,-1.2,-1.4, and-1.6

kcal/mol levels
ID1-ID8 integy moment: proportional to the distance between the baricenter of the surface and the

volume of interactions with the dry probe at the different energy levels
A amphiphilic moment
CP critical packing
HL1, HL2 balances of the hydrophilic-hydrophobic interactions
Wp1-Wp8 volume of interaction with the O probe at-0.2,-0.5,-1.0,-2.0,-3.0,-4.0,-5.0, and-6.0

kcal/mol levels
HB1-HB8 H-bond interaction at-0.2,-0.5,-1.0,-2.0,-3.0,-4.0,-5.0, and-6.0 kcal/mol levels
POL molecular polarizability
MW molecular weight
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SaSA is an in-house program that calculates 72 descriptors
starting from the 2D representation of the molecule. Size-
related descriptors included molecular weight (MW), the
number of heavy atoms, the number of carbons, and the
calculated molecular refractivity (CMR).44 Polarizability is
estimated by CMR and by an atom-based polarizability
scheme.45 Flexibility and rigidity are estimated by counting
the total number of bonds and rings (RNG), the number of
rotatable bonds (RTB), and the number of rigid bonds
(RGB)46 and by several topological indices that estimate other
properties47 as well (e.g., size). The Wiener, Balaban, Randic,
and Motoc indices, as well as the Kier and Hall suite of
topological descriptors,48 are used in SaSA. Hydrogen-
bonding capacity is estimated using four HYBOT32 descrip-
tors: the maximum free energy H-bond donor factor (Cd),
the sum ofCd values, the maximum free energy H-bond
acceptor factor (Ca), and the sum ofCa values. AllCd values
were given a positive sign, as previously suggested.49 In
addition, we use the simple count of oxygens, nitrogens,
H-bond donors (HDO), and H-bond acceptors (HAC), as
implemented in SaSA. Charge is estimated by counting the
positive (N_POS) and negative (N_NEG) ionization centers,
as well as the maximum positive and negative charge, as
calculated using the Gasteiger-Marsili method.50 Lipophi-
licity is estimated with two methods, CLOGP51 and ACD-
LogP.52 Both calculate the logarithm of the octanol-water
partition coefficient, logP.53

C. Statistics.All statistical analyses, including PCA and
PLS (partial least squares),54,55 were performed using the
SIMCA package.56 To yield descriptor columns with 0
average and 1 as standard deviation, an autoscaling pretreat-
ment of the variables was performed prior to any analysis.
PCA models were obtained for the ChemGPS training set,
as well as for the different validation sets. The ChemGPS
model was then used to estimate PCAt-scores on the basis
of the coordinate transformation matrix derived from the
reference set. This procedure, also termed56 PCA prediction,
was previously described for ChemGPS score estimation
starting from 2D descriptors.26

ChemGPS scores obtained using the VolSurf descriptors
were compared to those obtained from the SaSA and
HYBOT for the training set (423 compounds). Furthermore,

the t-scores derived via PCA prediction were compared to
the ones derived from local PCA models for the same sets.
PLS models were derived whenever experimental data were
available, with the same pretreated VolSurf descriptors. PLS
coefficients obtained for each of the datasets were then
compared to the PCA loadings predicted using the ChemGPS
training set.

D. Comparative Analysis of the PCAt-Scores.Principal
component axes derived from local models are often rotated
when compared to other PC axes from local or global models,
as previously discussed.26 To ascertain that the maximum
correlation coefficient has been found between the local and
global PCAt-scores, we used the following procedure:

When t1 is completely aligned tot′1, R equals 0° and the
t-scores are well correlated. Whenever rotation occurs,R is
not 0°, implying that the information extracted by the two
models, though it may be identical, needs to be reoriented
for better comparison, as performed in, for example, factor
analysis.57

Results and Discussion

Comparison of ChemGPS Scores Derived from SaSA
and VolSurf Descriptors. The PCA score plots for the first
and second components, based on the two sets of descriptors
and the ChemGPS set of objects (423 compounsd), are shown
in Figure 2A. These two reference systems contain different
maps and clusters. The first component has a correlation
index close to 0.6 in the pairwise comparison (Figure 2B),
a reflection of the importance of molecular size in both
descriptor sets. The remaining latent variables do not show
a significant correlation. This is not surprising, since VolSurf
is designed to cover ADME-related properties and is
computed from 3D structures, whereas SaSA features a rather
diverse set of 2D-based molecular descriptors designed to
cover chemical variability in property and topology space.
These results indicate that the information extracted by
ChemGPS/SaSA and ChemGPS/VolSurf (GPSVS) is comple-
mentary, not redundant, and is potentially useful when
planning combinatorial libraries.

Figure 1. Two-step process of computing VolSurf descriptors: (a) GRID molecular interactions field (MIF) calculation; (b) descriptor
derivation.

t1 ) t′1 cosR + t′2 sin R (1)
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GPSVS, a Global Model.One of the primary objectives
when designing the ChemGPS system was to avoid extrapo-
lation26 in the positioning of a novel compound in the
druglike or leadlike chemical space. When combining
ChemGPS with VolSurf, we aimed at preserving the ability
to provide a global model geared for pharmacokinetically
relevant properties. To assess the predictive power of the
GPSVS system,t-scores derived from the ChemGPS training
set via PCA- prediction, referred to as GPSVS scores, were
compared to thet-scores obtained from the local models of
the five validation sets. The advantage of deriving a global
model (applicable across chemistries) is evident if one
considers the pitfalls of local models; if all the molecules
were monocarboxylic acids, this information would not be
captured by the local model but would be highlighted in a
global (chemically diverse) model. This often manifests itself
as a principal component perturbation, or rotation, and it may
even lead to interdimensional swapping. For example, PC1
in model A (global) may well correlate with PC3, but not
with PC1, in model B (local), while PC2 in both models
could be directly correlated.

The local vs global relationships were scrutinized for the
five external data sets, stressing the highest correlation
between GPSVS predicted scores and the values obtained
from local models via eq 1. In all data sets, the fraction of

explained variance,r2, is higher than 0.7 for both PC1 and
PC2 and higher than 0.8 for at least one of the two
components (see Figure 3). This indicates a good predictive
power for the GPSVS model, as well as some particularities
of the local models. A rotation of the initial GPSVS scores
was required for all models to achieve the maximum
correlation. The predictivity of GPSVS is explained in part
by the good chemical structural span of the ChemGPS
training set, which appears to cover the space described by
the local test sets.

GPSVS does not have the directionality (sign) problem
that occurs in local PCA models, since the rotations present
in Figure 3, i.e., positive or negative slopes, do not occur.
This is due to the conventional design of the ChemGPS
system that derives PCA scores in a uniform manner, i.e.,
via prediction. Furthermore, the property correlations dis-
cussed below, which establish the relationship between the
GPSVS PC1 and permeability on one hand and between the
GPSVS PC2 and solubility on the other hand, were obtained
with no a priori input of either permeability or solubility
data. Rather, the relationships to experimental and theoretical
data for these two properties were established a posteriori.
This makes GPSVS a general model suitable for direct

Figure 2. (A) PCA score plots derived from SaSA (left) and VolSurf (right) descriptors. (B) Pairwise correlation between SaSA and
VolSurf principal components.
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interpretation, since the chemical space maps derived with
this system apply the same convention in a consistent
manner.

GPSVS and Passive Permeability.The passive transcel-
lular mechanism of absorption across the epithelial tissue in
the gastrointestinal tract or across the BBB was modeled
using several different techniques. Three data sets were
analyzed in this case: permeability across the BBB, perme-

ability across a Caco-2 cell monolayer, and permeability
across erythrocyte ghost cells.

VolSurf descriptors have successfully been used in pre-
dicting the brain penetration of 227 compounds37 by using
PLS discriminant analyses (PLS-DA). A local PCA model
was shown to produce results similar to results from PLS-
DA.37 PCA scores for the same 227 compounds were
obtained using GPSVS. A correlation analysis was performed

Figure 3. Intercomponent relationships between the GPSVS scores (global model) and the localt-scores for the first two components in
each validation set.
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between the PLS pseudocoefficients and the loadings for the
different components. The rotated PC1 correlates well with
the PLS pseudocoefficients (r2 ) 0.86), indicating that both
models extract the same information (data not shown).
Furthermore, the two-dimensional GPSVS score plot shown
in Figure 4A illustrates a direct relationship to the BBB
classification scheme,37 suggesting that GPSVS scores can
serve as a simple classifier for passive BBB permeability.

We have previously described38 a PLS-based VolSurf
model for passive transcellular permeability across a Caco-2
cells monolayer. PLS pseudocoefficients obtained from this
model were compared to the GPSVS loadings. The resulting
correlation (r2 ) 0.79) indicates that both methods extract
similar information (data not shown). GPSVS scores have a
direct relationship to Caco-2 permeability (r2 ) 0.67), as
illustrated in Figure 4B. Thus, in the absence of any a priori
input, GPSVS scores correlate with Caco-2 permeability data
in a manner that is comparable to those of the PLS model
based on VolSurf descriptors for the same 22 compounds38

(q2 ) 0.79). Similar analyses were performed for the
permeability data obtained from experiments across ghost
erythrocytes. The correlation between the PLS pseudocoef-
ficients and the loading for the GPSVS PC1 component (r2

) 0.61, data not shown) indicates that GPSVS scores are
correlated to this measure of passive permeability as well
(r2 ) 0.81; see Figure 4C).

Solubility-Related Models.Most of the efforts to predict
solubility have been focused on its relationship with logPo/w

(the logarithm of the octanol-water partition coefficient).53

We have used the LogPstar dataset, a collection of 7954
compounds from the Pomona Masterfile.39 A significant PLS
model, judged by its external predictivity (q2

cross-validated )
0.66;r2

external) 0.63), was derived (see Figure 5A). The PLS

pseudocoefficients for this model correlate well (r2 ) 0.97,
data not shown) with the PC2 loadings from GPSVS. In the
absence of any input related to logPo/w, GPSVS PC2 scores
correlate with the 7954 measured logPo/w values (r2 ) 0.61)
(see Figure 5B). The GPSVS predictivity,r2 ) 0.61, is quite
similar to the external predictivity of the PLS model,r2

external

) 0.63. While this may indicate the limited ability of VolSurf
descriptors to derive better logPo/w models, it also illustrates
the general predictivity of GPSVS with respect to this
property.

Intrinsic solubility, logSw, values40 were also compared
to GPSVS scores for 794 compounds. The data set was
divided into a training set (404 compounds) and a test set
(390 compounds). A significant PLS model, judged by its
external predictivity (q2

cross-validated) 0.70;r2
external) 0.70),

was derived (see Figure 6A). The PLS pseudocoefficients
correlate well with the PC2 loadings from GPSVS (r2 ) 0.85;
data not shown). Without any input related to aqueous
solubility, GPSVS PC2 scores correlate directly with the 794
log Sw values (r2 ) 0.68) (see Figure 6B). The GPSVS
predictivity, r2 ) 0.68, is quite similar to the external
predictivity of the PLS model,r2

external ) 0.70, indicating
perhaps not only the limited ability of VolSurf descriptors
to derive better logSw models but also the ability of GPSVS
to estimate solubility trends in a general manner.

Conclusions

The importance of early drug discovery awareness regard-
ing passive transcellular permeability and solubility has been
previously stressed.2 This paper documents, with multiple
datasets derived from independent experiments, that GPSVS
scores relate to observed permeability (PC1) and solubility
(PC2) values, without prior input of experimental data.

Figure 4. Correlation between the biological activity and the scores predicted by the GPSVS system: (A) for the blood-brain barrier; (B)
for the permeability across the Caco-2 cell monolayer; (C) for the permeability in the ghost erythrocytes cells.
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Usually, PCA models are interpreted by comparing the
loadings of various descriptors in the X (descriptor) block,
which then relate latent variables to physical meaning.
However, in GPSVS, the first two PCs are directly related
to measured properties (e.g., Caco-2 permeability and
solubility), an observation that is further substantiated by
comparison to PLS models derived for the same datasets.
While useful in estimating trends, GPSVS is not suitable
for exact estimates of permeability and solubility; even
though GPSVS PC1 correlates with passive permeability,
other routes of absorption, e.g., active transport and efflux
mechanisms, are not likely to be related to this score. And
while GPSVS PC2 can generally be regarded as a trend for

(intrinsic) aqueous solubility, one does not expect an exact
relationship between this score and other measures of
solubility, e.g., those related to different crystallization forms
of the same compound.

Whereas principal components are orthogonal by defini-
tion, the GPSVS scores relating to permability and solubility
are not. Their rotation amounts to an angle of approximately
43° when PC1 and PC2 are plotted together (see Figure 7).
Even though the angle between the two GPSVS axes is close
to 45°, implying a 1:1 relationship in PCA score units, we
found this scaling was not reflected by the comparison of
permeability and solubility. Thus, a two-log-unit increase in
intrinsic solubility (t′2 in Figure 7) is likely to result in a

Figure 5. (A) PLS model for the LogPstar dataset: actual vs estimated values for the 3867 compounds in the training set (left) and actual
vs predicted values for the 4069 compounds in the test set. Eighteen compounds were excluded because of problems in the VolSurf descriptor
calculation step. (B) The correlation between GPSVS PC2 scores and measured logPo/w values.

Figure 6. (A) PLS model for the solubility dataset: actual vs estimated values for the 404 compounds in the training set (left) and actual
vs predicted values for the 390 compounds in the test set. (B) The correlation between the GPSVS PC2 scores and measured logSw.
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one-log-unit drop in passive transcellular permeability (t′1
in Figure 7), whereas a two-log-unit increase in permeability
is likely to result in a one-log-unit decrease in solubility (see
Figure 7). In relationship to the biopharmaceutical classifica-
tion system (BCS), this implies that solubility is more
restrictive compared to permeability. In terms of library
design, this indicates that compounds with high solubility/
bad permeability can be easier brought into the medium
solubility/medium permeability range, in comparison with
compounds having low solubility/good permeability. Further
consequences of this axial rearrangement and its relationship
to BCS are currently under investigation in our group.

The ChemGPS set of objects provides different chemical
space maps, when used in conjunction with 2D-based
descriptors computed by SaSA and HYBOT, vs the 3D-based
VolSurf descriptors; all correlation indices among the first
six principal components are lower than 0.2 except for PC1
(r2 ) 0.61; see Figure 2B). This advocates the use of 3D-
based descriptors (i.e., VolSurf), not 2D-based descriptors,
in combination with ChemGPS when mapping the medicinal
chemistry space with respect to permeability and solubility
(BCS). In conclusion, the GPSVS system, a training-set free
model for permeability and solubility, can be used as a BCS-
related global mapping device for large sets of compounds
to assist combinatorial and medicinal chemists in synthesis
planning, thus accelerating the drug discovery process.
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